A component-based regularised Cox Regression:

 SC-CoxR
X. Bry IMAG, Univ. Montpellier

Joint work with:
T. Simac , S. El Ghachi and P. Antoine

Data and Problem

1. Data

1.1. The Data

A right-censored survival time y, to be modelled through many possibly redundant time-dependent explanatory variables.

Data and Problem

1. Data

1.1. The Data

A right-censored survival time y, to be modelled through many possibly redundant time-dependent explanatory variables.
1.2. The conceptual model

Thematic blocks (themes) of many redundant explanatory variables

A few additional covariates

Data and Problem

2. Problem

2.1. Dimension reduction

A few additional covariates

No dimension reduction required in Z

Data and Problem

2. Problem

2.1. Dimension reduction

A few additional covariates

No dimension reduction required in Z
2.2. Exploratory + explanatory situation

The explanatory dimensions must be found AND easy to interpret.

Data and Problem

2. Problem

2.3. How to tackle both issues

We shall look for "strong" orthogonal components in each X-theme...
A few additional covariates

No dimension reduction required in Z

Data and Problem

2. Problem

2.3. How to tackle both issues

We shall look for "strong" orthogonal components in each X-theme...

A few additional covariates

No dimension reduction required in Z

Data and Problem

2. Problem

2.3. How to tackle both issues

A few
We shall look for "strong" orthogonal components in each X-theme...
additional covariates

... so as to build a component-based Cox Proportional Hazard Model:
With $f_{(i, t)}:=\left(f_{(i, t)}^{1}, f_{(i, t)}^{2}, \ldots, g_{(i, t)}, h_{(i, t)}^{1}, \ldots\right)^{\prime}: \quad h\left(t ; x_{(i, t)}, z_{(i, t)}\right)=h_{0}(t) e^{\delta^{\prime} f_{(i, t)}+\gamma^{\prime} z_{(i, t)}}$

Statistical model

1. The classical Cox Proportional hazard Model

Regressor-set $X \rightarrow$ semi-parametric hazard function: $\quad h\left(t ; x_{(i, t)}\right)=h_{0}(t) e^{\beta^{\beta} x_{(, t)}}$

Statistical model

1. The classical Cox Proportional hazard Model

Regressor-set $X \rightarrow$ semi-parametric hazard function: $\quad h\left(t ; x_{(i, t)}\right)=h_{0}(t) e^{\beta^{\beta} x_{(, t)}}$
2. The component-based Cox-Model
2.1. The single- X-theme component Model

Explanatory theme $X \rightarrow$ components $F=\left[f^{1}, \ldots, f^{k}\right]$, where $f^{k}=X u^{k}$
Let $f_{(i, t)}:=\left(f_{(i, t)}^{1}, \ldots, f_{(i, t)}^{k}\right) \prime$
\rightarrow semi-parametric hazard function of the component-model: $\quad h\left(t ; x_{(i, t)}, z_{(i, t)}\right)=h_{0}(t) e^{\alpha^{\prime} f_{(i, t)}+\gamma^{\prime} z_{(i, t)}}$

Statistical model

1. The classical Cox Proportional hazard Model

Regressor-set $X \rightarrow$ semi-parametric hazard function: $\quad h\left(t ; x_{(i, t)}\right)=h_{0}(t) e^{\beta^{\beta} x_{(, t)}}$
2. The component-based Cox-Model

2.1. The single- X-theme component Model

Explanatory theme $X \rightarrow$ components $F=\left[f^{1}, \ldots, f^{k}\right]$, where $f^{k}=X u^{k}$
Let $\quad f_{(i, t)}:=\left(f_{(i, t)}^{1}, \ldots, f_{(i, t)}^{k}\right)$)
\rightarrow semi-parametric hazard function of the component-model: $\quad h\left(t ; x_{(i, t)}, z_{(i, t)}\right)=h_{0}(t) e^{\alpha^{\prime} f_{(i, n)}+\gamma^{\prime} z_{(i, t)}}$

2.2. The general component Model

Explanatory theme $\quad X_{r} \rightarrow$ components $F_{r}=\left[f_{r}^{1}, \ldots, f_{r}^{k_{r}}\right]$, where $f_{r}^{k}=X_{r} u_{r}^{k}$ Let $\quad f_{r(i, t)}:=\left(f_{r(i, t)}^{1}, \ldots, f_{r(i, t)}^{k_{r}}\right)$)
\rightarrow semi-param. hazard function of the component-model: $\quad h\left(t ; x_{(i, t)}, z_{(i, t)}\right)=h_{0}(t) e^{\sum_{i=1}^{R} \alpha_{r}^{\prime} f_{f(t, t)}+y^{\prime} z_{(l, t)}}$

Structural Relevance of components

1. The notion of Structural Relevance

Components must capture interpretable variable structures
\Rightarrow Components must be structurally relevant, i.e.:

- close to bundles of observed variables

Structural Relevance of components

1. The notion of Structural Relevance

Components must capture interpretable variable structures
\Rightarrow Components must be structurally relevant, i.e.:

- close to bundles of observed variables

Structural Relevance of components

1. The notion of structural relevance

Components must capture interpretable variable structures
\Rightarrow Components must be structurally relevant, i.e.:

- or close to bundles of interpretable subspaces (e.g. embodying theory-based constraints)

Structural Relevance of components

2. The expression of Structural Relevance

- Component in a theme $X: \quad f=X u$

Structural Relevance of components

2. The expression of Structural Relevance

- Component in a theme $X: \quad f=X u$
- Identification / regularisation constraint : $u^{\prime} M^{-1} u=1$
with $M^{-1}=\tau A^{-1}+(1-\tau) X^{\prime} W X$, where A is such that PCA of (X, A, W) is relevant to X 's data, and $\tau \in[0,1]$ is a parameter tuning regularisation:
- $\tau=0$ means no regularisation;
- $\tau=1$ means PLS-strong regularisation.

Structural Relevance of components

2. The expression of Structural Relevance

- Component in a theme $X: \quad f=X u$
- Identification / regularisation constraint : $u^{\prime} M^{-1} u=1$
with $M^{-1}=\tau A^{-1}+(1-\tau) X^{\prime} W X$, where A is such that PCA of (X, A, W) is relevant to X s data, and $\tau \in[0,1]$ is a parameter tuning regularisation:
- $\tau=0$ means no regularisation;
- $\tau=1$ means PLS-strong regularisation.
- The Structural Relevance Indicator:

$$
\phi_{\mathbf{N}, \Omega, l}(u):=\left(\sum_{j=1}^{J} \omega_{j}\left(u^{\prime} N_{j} u\right)^{l}\right)^{\frac{1}{l}} \quad \text { s.t. constraint } \quad u^{\prime} M^{-1} u=1
$$

weights $\quad N_{j}$'s code the directions
components should focus on

Structural Relevance of components

2. The expression of Structural Relevance

- Purpose of $N_{j}{ }^{\prime} s=$?

$$
\phi_{\mathrm{N}, \Omega, l}(u):=\left(\sum_{j=1}^{J} \omega_{j}\left(u^{\prime} N_{j} u\right)^{l}\right)^{\frac{1}{l}}
$$

The N_{j} 's are coding directions of concern
Examples: - Component's variance: $\quad \phi(u)=V(f)=\|X u\|_{W}^{2}=u^{\prime}\left(X^{\prime} W X\right) u$

$$
(W=\text { matrix of line-weights }) \quad\|u\|^{2}=1 \Rightarrow M=I
$$

\rightarrow directions of discrepancy of observations

Structural Relevance of components

2. The expression of Structural Relevance

- Purpose of $N_{j}{ }^{\prime} s=$?

$$
\left.\phi_{\mathbf{N}, \Omega, l}(u):=\mid \sum_{j=1}^{J} \omega_{j}\left(u^{\prime} N_{j} u\right)^{l}\right)^{\frac{1}{l}}
$$

The N_{j} 's are coding directions of concern
Examples: > Component's variance: $\quad \phi(u)=V(f)=\|X u\|_{W}^{2}=u^{\prime}\left(X^{\prime} W X\right) u$

$$
(W=\text { matrix of line-weights }) \quad\|u\|^{2}=1 \Rightarrow M=I
$$

\rightarrow directions of discrepancy of observations
, Variable Powered Inertia: $\quad \phi(u)=\left(\sum_{j=1}^{p} \omega_{j} \rho^{2 l}\left(f, x^{j}\right)\right)^{\frac{1}{l}}$ locality parameter

$$
\begin{aligned}
= & (\sum_{j=1}^{p} \omega_{j}(u^{\prime} \underbrace{X^{\prime} W x^{j} x^{j}, W X}_{N_{j}} u)^{\ell})^{\frac{1}{l}} \\
& \|f\|_{W}^{2}=1 \Rightarrow M=\left(X^{\prime} W X\right)^{-1}
\end{aligned}
$$

\rightarrow directions of observed variables.

Structural Relevance of components

2. The expression of Structural Relevance

- Purpose of $N_{j}{ }^{\prime} s=$?

$$
\left.\phi_{\mathbf{N}, \Omega, l}(u):=\mid \sum_{j=1}^{J} \omega_{j}\left(u^{\prime} N_{j} u\right)^{l}\right)^{\frac{1}{l}}
$$

The N_{j} 's are coding directions of concern
Examples:
Variable Powered Inertia can be extended to:
, Variable Powered Covariance: $\phi(u)=\left(\sum_{j=1}^{p} \omega_{j}\left\langle f \mid x^{j}\right\rangle_{W}^{2 l}\right)^{\frac{1}{l}}$

$$
=\left(\sum_{j=1}^{p} \omega_{j}\left(u^{\prime} X^{\prime} W x_{N_{j}^{j}} x^{j}, W X u\right)^{l}\right)^{\frac{1}{l}}
$$

$M^{-1}=\tau A^{-1}+(1-\tau)\left(X^{\prime} W X\right) \quad$ where $A=$ suitable metric matrix for X 's PCA

Regularisation parameter:
$\tau=0$: no regularisation.
$\tau=1:$ PLS-strong regularisation.

Structural Relevance of components

2. The expression of Structural Relevance

- Purpose of $l=$?

$$
\phi_{\mathbf{N}, \Omega, l}(u):=\left(\sum_{j=1}^{J} \omega_{j}\left(u^{\prime} N_{j} u\right)^{l}\right)^{\frac{1}{l}}
$$

l : tunes the "locality" of the bundles of directions to focus on locality $= \pm$ the "narrowness" of the bundles of directions of structural interest.

Structural Relevance of components

2. The expression of Structural Relevance

- Purpose of $l=$?

$$
\phi_{\mathbf{N}, \Omega, l}(u):=\left(\sum_{j=1}^{J} \omega_{j}\left(u^{\prime} N_{j} u\right)^{l}\right)^{\frac{1}{l}}
$$

l : tunes the "locality" of the bundles of directions to focus on locality $= \pm$ the "narrowness" of the bundles of directions of structural interest.

Would this set of directions rather be considered...

Structural Relevance of components

2. The expression of Structural Relevance

- Purpose of $l=$?

$$
\phi_{\mathbf{N}, \Omega, l}(u):=\left(\sum_{j=1}^{J} \omega_{j}\left(u^{\prime} N_{j} u\right)^{l}\right)^{\frac{1}{l}}
$$

l : tunes the "locality" of the bundles of directions to focus on locality $= \pm$ the "narrowness" of the bundles of directions of structural interest.

Would this set of directions rather be considered...
... one bundle? $(l \ll)$

Structural Relevance of components

2. The expression of Structural Relevance

- Purpose of $l=$?

$$
\left.\phi_{\mathbf{N}, \Omega, l}(u):=\mid \sum_{j=1}^{J} \omega_{j}\left(u^{\prime} N_{j} u\right)^{l}\right)^{\frac{1}{l}}
$$

l : tunes the "locality" of the bundles of directions to focus on locality $= \pm$ the "narrowness" of the bundles of directions of structural interest.

Would this set of directions rather be considered...

Structural Relevance of components

2. The expression of Structural Relevance

- Purpose of $l=$?

$$
\phi_{\mathbf{N}, \Omega, l}(u):=\left(\sum_{j=1}^{J} \omega_{j}\left(u^{\prime} N_{j} u\right)^{l}\right)^{\frac{1}{l}}
$$

l : tunes the "locality" of the bundles of directions to focus on locality $= \pm$ the "narrowness" of the bundles of directions of structural interest.

Would this set of directions rather be considered...

... four bundles? $(l \uparrow \uparrow)$

Structural Relevance of components

2. The expression of Structural Relevance

- Purpose of $l=$?

$$
\phi_{\mathbf{N}, \Omega, l}(u):=\left(\sum_{j=1}^{J} \omega_{j}\left(u^{\prime} N_{j} u\right)^{l}\right)^{\frac{1}{l}}
$$

l : tunes the "locality" of the bundles of directions to focus on locality $= \pm$ the "narrowness" of the bundles of directions of structural interest.

Would this set of directions rather be considered...

... eight bundles, each one being a single direction? $(l \rightarrow \infty)$

Structural Relevance of components

2. The expression of Structural Relevance

- Purpose of $l=$?

$$
\phi_{\mathbf{N}, \Omega, l}(u):=\left(\sum_{j=1}^{J} \omega_{j}\left(u^{\prime} N_{j} u\right)^{l}\right)^{\frac{1}{l}}
$$

l : tunes the "locality" of the bundles of directions to focus on locality $= \pm$ the "narrowness" of the bundles of directions of structural interest.

Would this set of directions rather be considered...

This ultimately depends on the data \Rightarrow Best l to be found through cross-validation.

... eight bundles, each one being a single direction? $(l \rightarrow \infty)$

Structural Relevance of components

2. The expression of Structural Relevance

l : tunes the "locality" of the bundles of directions to focus on
Example: 4 variables in a plane...

- VPI: $\phi_{x}^{l}(u)$ plotted in polar coordinates:

Structural Relevance of components

2. The expression of Structural Relevance

l : tunes the "locality" of the bundles of directions to focus on
Example: 4 variables in a plane...

- VPI: $\phi_{x}^{l}(u)$ plotted in polar coordinates:

SC-CoxR's mechanism

1. Estimation of a standard Cox-model

1.1. Partial likelihood

Let :

- $R(t)$ denote the set of all individuals at risk at time t;
- δ denote the censoring indicator:
$\forall i: \delta_{i}=1$ if for individual i, the event occurs at time y_{i}
$\delta_{i}=0$ if individual i is censored at time y_{i}
Cox (1979) suggested to get $\hat{\beta}$ by maximising on β the following conditional likelihood: (which is rid of the $h_{0}(t)$ baseline terms)

$$
l_{p}(\beta)=\prod_{i=1}^{n}\left[\frac{e^{\beta^{\prime} x_{i, y_{i}}}}{\sum_{j \in R\left(y_{i}\right)} e^{\beta^{\prime} x_{j, v_{i}}}}\right]^{\delta_{i}}
$$

SC-CoxR's mechanism

1. Estimation of a standard Cox-model

1.1. Partial likelihood

Let :

- $R(t)$ denote the set of all individuals at risk at time t;
- δ denote the censoring indicator:
$\forall i: \delta_{i}=1$ if for individual i, the event occurs at time y_{i}
$\delta_{i}=0$ if individual i is censored at time y_{i}
Cox (1979) suggested to get $\hat{\beta}$ by maximising on β the following conditional likelihood: (which is rid of the $h_{0}(t)$ baseline terms)

$$
l_{p}(\beta)=\prod_{i=1}^{n}\left[\frac{e^{\beta^{\prime} x_{i, y_{i}}}}{\sum_{j \in R\left(y_{i}\right)} e^{\beta^{\prime} x_{j, v_{i}}}}\right]^{\delta_{i}}
$$

1.2. Estimation of the baseline hazard

Given $\hat{\beta}$, [Kalbfleisch et al. 1973], [Breslow 1974], among others, proposed an estimation of the Baseline Survival Function, based on it.

SC-CoxR's mechanism

2. Estimation of the single-X component-based Cox Model

2.1. The single- X component-based Cox Model

- In the Cox model, X is replaced by $F=X U, U=\left[u_{1}, \ldots, u_{k}\right]$ where X has been standardised column-wise :

$$
\begin{aligned}
h\left(t ; x_{i, t}, z_{i, t}\right) & =h_{0}(t) e^{\alpha^{\prime} f_{i, t}+\gamma^{\prime} z_{i, t}} \\
& =h_{0}(t) e^{\alpha^{\prime} U^{\prime} x_{i, t}+\gamma^{\prime} z_{i, t}}
\end{aligned}
$$

SC-CoxR's mechanism

2. Estimation of the single-X component-based Cox Model

2.1. The single- X component-based Cox Model

- In the Cox model, X is replaced by $F=X U, U=\left[u_{1}, \ldots, u_{k}\right]$ where X has been standardised column-wise :

$$
\begin{aligned}
h\left(t ; x_{i, t}, z_{i, t}\right) & =h_{0}(t) e^{\alpha^{\prime} f_{i, t}+\gamma^{\prime} z_{i, t}} \\
& =h_{0}(t) e^{\alpha^{\prime} U^{\prime} x_{i, t}+\gamma^{\prime} z_{i, t}}
\end{aligned}
$$

both unknown
\Rightarrow non-linear / parameters

SC-CoxR's mechanism

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

- Component $f^{1}=X u_{1}$ is sought as the solution of:

$$
u_{1}=\underset{\substack{\alpha, \gamma \\ u^{\prime} M^{-1} u=1 \\ \arg } \underbrace{}_{\text {Goodness of fit }}[(\underbrace{l_{p}(u, \alpha, \gamma)}_{\text {SR }})^{1-s}(\underbrace{}_{X}(u))^{s}]}{\substack{s}}
$$

SC-CoxR's mechanism

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

- Component $f^{1}=X u_{1}$ is sought as the solution of:

$$
u_{1}=\underset{u}{\arg } \max _{\substack{\alpha, \gamma \\ u^{\prime} M^{-1} u=1}}[\underbrace{l_{p}(u, \alpha, \gamma)}_{\text {Goodness of fit }})^{1-s}(\underbrace{\left.\phi_{X}(u)\right)^{s}}_{\text {SR }}]
$$

$s \in[0 ; 1]$ tunes the importance of the SR with respect to the GOF so that, at the maximum, relative variations of GOF and SR compensate:

$$
\frac{\nabla l_{p}(u)}{l_{p}(u)}=-\frac{s}{1-s} \frac{\nabla \phi(u)}{\phi(u)}
$$

SC-CoxR's mechanism

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

- Component $f^{1}=X u_{1}$ is sought as the solution of:

$$
u_{1}=\arg \max _{\substack{\alpha, \gamma \\ u^{\prime} M^{-1} u=1}}[\underbrace{l_{p}(u, \alpha, \gamma)}_{\text {Goodness of fit }})^{1-s}(\underbrace{\left.\phi_{X}(u)\right)^{s}}_{\text {SR }}]
$$

$s \in[0 ; 1]$ tunes the importance of the SR with respect to the GOF so that, at the maximum, relative variations of GOF and SR compensate:

$$
\frac{\nabla l_{p}(u)}{l_{p}(u)}=-\frac{s}{1-s} \frac{\nabla \phi(u)}{\phi(u)}
$$

- A continuum-approach:
$>s=0$: the criterion is equal to l_{p}; its maximisation leads to the classical Cox Regression
$\nu s=1$: the criterion is equal to $\phi_{X}(u)$; its maximisation leads to PCA
for $\mathrm{SR}=$ component-variance and VPI.
$>0<s<1$: the criterion is a trade-off between these extremes, and provides a supervised component-based Cox regression.

SC-CoxR's mechanism

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

- Calculating the first component:

SC-CoxR's mechanism

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

- Calculating the first component:
can be done by alternating, until convergence:

1) With a given u : Cox regression on $f=X u$ and Z
\rightarrow update of α, γ

SC-CoxR's mechanism

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

- Calculating the first component:
can be done by alternating, until convergence:

1) With a given u : Cox regression on $f=X u$ and Z
\rightarrow update of α, γ
2) With given α, γ : solving

$$
u_{1}=\arg \max _{u^{\prime} M^{-1} u=1}\left[(1-s) \ln l_{p}(u, \alpha, \gamma)+s \ln \phi_{X}(u)\right]
$$

\rightarrow update of u
(this step uses the dedicated PING algorithm, detailed later)

SC-CoxR's mechanism

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

- Calculating further components:

1) Every new component f^{k} must be uncorrelated with the former ones: $F^{k-1}=\left[f^{1}, \ldots, f^{k-1}\right]$
$N=$ number of lines of $X=$ number of individuals-at-risk at time-points (i, t)
$W=(N, N)$ diagonal line-weighting matrix

$$
\left\langle f^{k} \mid F^{k-1}\right\rangle_{W}=0 \quad \Rightarrow \quad D_{k}^{\prime} u_{k}=0 \text { with } D_{k}=X^{\prime} W F^{k-1}
$$

SC-CoxR's mechanism

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

- Calculating further components:

1) Every new component f^{k} must be uncorrelated with the former ones: $F^{k-1}=\left[f^{1}, \ldots, f^{k-1}\right]$
$N=$ number of lines of $X=$ number of individuals-at-risk at time-points (i, t)
$W=(N, N)$ diagonal line-weighting matrix

$$
\left\langle f^{k} \mid F^{k-1}\right\rangle_{W}=0 \Rightarrow D_{k}^{\prime} u_{k}=0 \text { with } D_{k}=X^{\prime} W F^{k-1}
$$

Note on individual-weighting:

- Uniform weighting \Rightarrow each line of an individual \leftarrow weight inversely proportional to the number of the individual's lines.
- Weighting proportional to the individual's duration of follow-up \Rightarrow The weight of each line = proportional to the line's time span.

SC-CoxR's mechanism

2. Estimation of the single-X component-based Cox Model

2.2. Calculating components

- Calculating further components:

2) Former components $F^{k-1}=\left[f^{1}, \ldots, f^{k-1}\right]$ must now be included into the extra covariates in order to remove their effect.

$$
Z^{k}:=\left[Z ; F^{k-1}\right]
$$

performed as for u_{1}, with additional constraint:

$$
D_{k}^{\prime} u=0
$$

SC-CoxR's mechanism

3. The PING algorithm

$$
\max _{\substack{u \in \mathbb{R}^{p}, u^{\prime} M^{-1} u=1 \\ D^{\prime} u=0}} h(u)
$$

At the solution: $u=M \Pi_{D^{\perp}} \Gamma(u), M^{-1}$ - normed with $\Pi_{D^{\prime}}:=I-D\left(D^{\prime} M D\right)^{-1} D^{\prime} M$

Hence an iteration: $\quad \tilde{u}^{[t+1]}=\frac{M \Pi_{D^{\perp}} \Gamma\left(u^{[t]}\right)}{\left\|M \Pi_{D^{\perp}} \Gamma\left(u^{[t]}\right)\right\|_{M^{-1}}} \quad ; \quad u^{[t+1]}=\arg \max _{\operatorname{arc}\left(u^{l l}, \tilde{u}^{[t+1}\right)} h(u) \quad$ (unidimensional)

We proved that this iteration follows a direction of ascent.

SC-CoxR's mechanism

4. Estimating the Multiple-X model

Iterate over themes until overall convergence:

To calculate components in current theme consider components of other themes as additional covariates

SC-CoxR's mechanism

5. Assessing the Component Cox model

- Cross-Validation techniques for the Cox Model are provided by [van Houwelingen et al. (2006)] K-fold subsampling :

Cross-validation quality coefficient of model $M: C_{k}(M)$

$$
\begin{aligned}
& k_{k}(M)=l\left(\theta_{-k}, M\right)-l_{-k}\left(\theta_{-k}, M\right) \\
& k^{\text {ieth }} \text { sub-sample }
\end{aligned}
$$

calculated without the $k^{\text {ieth }}$ sub-sample

$$
C(M)=\frac{1}{K} \sum_{k=1}^{K} C_{k}(M)
$$

SC-CoxR's mechanism

5. Assessing the Component Cox model

- Cross-Validation techniques for the Cox Model are provided by [van Houwelingen et al. (2006)] K-fold subsampling :

Cross-validation quality coefficient of model $M: C_{k}(M)$

$$
\begin{gathered}
k_{k}^{\text {ieth }} \text { sub-sample }
\end{gathered}
$$

- More simply, one can assess the significance of the components by :
a) calculating the vectors $\left\{U_{r}\right\}_{r=1, R}$ on a calibration sample C;
b) calculating the components' values on a spare test-sample T;
c) performing a Cox Regression on T, with the associated classical significance-tests.

SC-CoxR's mechanism

6. Outputs

- Correlations of components with variables in each theme \rightarrow correlation scatterplots

\rightarrow component thematic interpretation

SC-CoxR's mechanism

6. Outputs

- Correlations of components with variables in each theme \rightarrow correlation scatterplots

\rightarrow component thematic interpretation
- Cox Regression on components \rightarrow
components' effects ; P-values / confidence interval on test-sample T, or boostrap confidence interval

SC-CoxR's mechanism

6. Outputs

- Correlations of components with variables in each theme \rightarrow correlation scatterplots

\rightarrow component thematic interpretation
- Cox Regression on components \rightarrow components' effects; P-values / confidence interval on test-sample T, or boostrap confidence interval
- Components' effects + vectors U
\rightarrow (regularised) coefficients of original variables in linear predictor
+ boostrap confidence interval

Short simulation study

1. Simulation scheme

- Time-span : [0,30] , divided in 30 unit-length elementary intervals.
- Baseline hazard function:

$$
h_{0}(t)=a+b\left(t-t_{m}\right)^{2} \quad \text { with } \quad t_{m}=12, a=.2, b=10^{-3}
$$

Short simulation study

1. Simulation scheme

- Time-span : [0,30] , divided in 30 unit-length elementary intervals.
- Baseline hazard function:

$$
h_{0}(t)=a+b\left(t-t_{m}\right)^{2} \quad \text { with } \quad t_{m}=12, a=.2, b=10^{-3}
$$

- 75 subjects simulated with bundle-structures:

Variables at subject level : $\quad \psi_{i}^{j} \sim N(0 ; 1), j \in\{1,2,3\}, i \in\{1, \ldots, 75\}$
Variables at subject-time level : $\quad \phi_{i t}^{j} \sim N(0 ; 1), j \in\{1,2,3\}, i \in\{1, \ldots, 75\}, t \in\{1, \ldots, 30\}$
Combination :

$$
\forall(i, t, j): \xi_{i t}^{j}=\psi_{i}^{j}+\phi_{i t}^{j}
$$

Short simulation study

1. Simulation scheme

- Time-span : [0,30] , divided in 30 unit-length elementary intervals.
- Baseline hazard function:

$$
h_{0}(t)=a+b\left(t-t_{m}\right)^{2} \quad \text { with } \quad t_{m}=12, a=.2, b=10^{-3}
$$

- 75 subjects simulated with bundle-structures:

Variables at subject level : $\quad \psi_{i}^{j} \sim N(0 ; 1), j \in\{1,2,3\}, i \in\{1, \ldots, 75\}$
Variables at subject-time level : $\quad \phi_{i t}^{j} \sim N(0 ; 1), j \in\{1,2,3\}, i \in\{1, \ldots, 75\}, t \in\{1, \ldots, 30\}$
Combination :

$$
\forall(i, t, j): \xi_{i t}^{j}=\psi_{i}^{j}+\phi_{i t}^{j}
$$

$\xi^{1}, \xi^{2}, \xi^{3} \rightarrow 3$ explanatory variable-bundles:
, $B_{1}: 4$ variables $x^{j}=\xi^{1}+\varepsilon^{j}$;
> $B_{2}: 6$ variables $x^{j}=\xi^{2}+\varepsilon^{j}$;
, $B_{3}: 10$ variables $x^{j}=\xi^{3}+\varepsilon^{j}$; where $\varepsilon^{j}=N\left(0 ; \sigma^{2}\right)$ noise with $\sigma=0.3$
$+B_{4}: 20$ noise-variables $x^{j} \sim N(0 ; 1)$

Short simulation study

1. Simulation scheme

- Time-span : [0,30], divided in 30 unit-length elementary intervals.
- Baseline hazard function:

$$
h_{0}(t)=a+b\left(t-t_{m}\right)^{2} \quad \text { with } \quad t_{m}=12, a=.2, b=10^{-3}
$$

- 75 subjects simulated with bundle-structures:

Variables at subject level : $\quad \psi_{i}^{j} \sim N(0 ; 1), j \in\{1,2,3\}, i \in\{1, \ldots, 75\}$
Variables at subject-time level : $\quad \phi_{i t}^{j} \sim N(0 ; 1), j \in\{1,2,3\}, i \in\{1, \ldots, 75\}, t \in\{1, \ldots, 30\}$
Combination:

$$
\forall(i, t, j): \xi_{i t}^{j}=\psi_{i}^{j}+\phi_{i t}^{j}
$$

$\xi^{1}, \xi^{2}, \xi^{3} \rightarrow 3$ explanatory variable-bundles:
, $B_{1}: 4$ variables $x^{j}=\xi^{1}+\varepsilon^{j}$;
, $B_{2}: 6$ variables $x^{j}=\xi^{2}+\varepsilon^{j}$;
, $B_{3}: 10$ variables $x^{j}=\xi^{3}+\varepsilon^{j}$; where $\varepsilon^{j}=N\left(0 ; \sigma^{2}\right)$ noise with $\sigma=0.3$
$+B_{4}: 20$ noise-variables $x^{j} \sim N(0 ; 1)$

Short simulation study

1. Simulation scheme

- Exponential Survival Time y with hazard function:

$$
\begin{aligned}
& \forall(i, t, j): h_{i}(t)=h_{0}(t) e^{\eta_{i t}} \text { where } \quad \eta_{i t}=.25+\underbrace{\xi_{i t}^{1}-.5 \xi_{i t}^{2}} \\
& \Rightarrow X_{3}\left(1^{\text {st }} \mathrm{PC}\right) \text { is a nuisance variable-bundle. }
\end{aligned}
$$

Short simulation study

2. Results

$$
s=1 \quad ; \quad l=1 \quad ; \quad \tau=0 \quad(=\mathrm{PCA})
$$

Cox-regression on the components :

$$
\begin{aligned}
& f^{1}: \text { coefficient }=-0.03 ; \mathrm{p}=0.830 \\
& f^{2}: \text { coefficient }=-0.42 ; \mathrm{p}=0.004
\end{aligned}
$$

Short simulation study

2. Results

$$
s=1 \quad ; \quad l=1 \quad ; \quad \tau=0 \quad(=\mathrm{PCA})
$$

Cox-regression on the components :

$$
\begin{aligned}
& f^{1}: \text { coefficient }=-0.03 ; \mathrm{p}=0.830 \\
& f^{2}: \text { coefficient }=-0.42 ; \mathrm{p}=0.004
\end{aligned}
$$

$$
\begin{aligned}
& f^{3}: \text { coefficient }=-1.60 ; \mathrm{p}<10^{-16} \\
& f^{4}: \text { coefficient }=-0.09 ; \mathrm{p}=0.49
\end{aligned}
$$

Short simulation study

2. Results

$$
s=0.95 \quad ; \quad l=1 \quad ; \quad \tau=0.01
$$

Cox-regression on the components (on test sample):

$$
\begin{aligned}
& f^{1}: \text { coefficient }=-1.69 ; p<2.00 \quad 10^{-16} \\
& f^{2}: \text { coefficient }=0.69 ; p=1.4910^{-5}
\end{aligned}
$$

Short simulation study

2. Results

$$
s=0.95 \quad ; \quad l=1 \quad ; \quad \tau=0.01
$$

Cox-regression on the components (on test sample):

$$
\begin{array}{ll}
f^{1}: \text { coefficient }=-1.69 ; \mathrm{p}<2.0010^{-16} & f^{3}: \text { coefficient }=-0.19 ; \mathrm{p}=0.19 \\
f^{2}: \text { coefficient }=0.69 ; \mathrm{p}=1.4910^{-5} & f^{4}: \text { coefficient }=-0.09 ; \mathrm{p}=0.56
\end{array}
$$

Short simulation study

2. Results

$$
s=0.95 \quad ; \quad l=4 \quad ; \quad \tau=0.01
$$

Cox-regression on the components (on test sample):

$$
\begin{aligned}
& f^{1}: \text { coefficient }=-1.92 ; \mathrm{p}<2.0010^{-16} \\
& f^{2}: \text { coefficient }=-0.27 ; \mathrm{p}=0.068
\end{aligned}
$$

Short simulation study

2. Results

$$
s=0.95 \quad ; \quad l=4 \quad ; \quad \tau=0.01
$$

Cross-validation performance according to the number of components retained

Short simulation study

2. Results

The impact of $\tau($ for $s=0.95, l=4)$:

Coefficients with unstable values and signs

Short simulation study

2. Results

The impact of $\tau($ for $s=0.95, l=4)$:

Coefficients
with unstable
values and signs

Coefficients with stable \& even values and signs

Short simulation study

2. Results

The impact of $\tau($ for $s=0.95, l=4)$:

Coefficients
with unstable
values and signs

$\rho(\eta, \hat{\eta})$
0.948
0.965
0.972
0.977
0.982

Coefficients with stable \& even values and signs

Short simulation study

2. Results

$$
s=0.00
$$

Cox-regression on the components (test sample):

$$
\begin{aligned}
& f^{1}: \text { coefficient }=-1.85 ; p<2.0010^{-16} \\
& f^{2}: \text { coefficient }=-0.12 ; \mathrm{p}=0.35
\end{aligned}
$$

Short simulation study

2. Results

$$
s=0.00
$$

$$
s=0.1 \quad ; \quad l=1 \quad ; \quad \tau=0.01
$$

Cox-regression on the components (test sample):

$$
\begin{aligned}
& f^{1}: \text { coefficient }=-1.85 ; \mathrm{p}<2.0010^{-16} \\
& f^{2}: \text { coefficient }=-0.12 ; \mathrm{p}=0.35
\end{aligned}
$$

$$
f^{1}: \text { coefficient }=-1.83 ; \mathrm{p}<2.0010^{-16}
$$

$$
f^{2}: \text { coefficient }=-0.11 ; p=0.40
$$

An application to life-history analysis

1. The data :

- From the 2001 retrospective survey conducted by Antoine and Fall:

Crisis, passage to adult age, and family in poor and middle classes in Dakar.

- The subjects: 222 married men born before 1967 and residing in Dakar, Senegal.
- The event under study: the shift from monogamy to polygamy.
$\rightarrow \quad 55$ events (marriages to a second wife).

An application to life-history analysis

1. The data :

- From the 2001 retrospective survey conducted by Antoine and Fall:

Crisis, passage to adult age, and family in poor and middle classes in Dakar.

- The subjects: 222 married men born before 1967 and residing in Dakar, Senegal.
- The event under study: the shift from monogamy to polygamy.
$\rightarrow \quad 55$ events (marriages to a second wife).
- Covariates: 107 time-varying variables, some of which highly correlated.

$$
\Rightarrow \quad \text { direct Cox regression impossible. }
$$

- 0.95-confidence intervals obtained by bootstrap.

An application to life-history analysis

2. Results

$$
s=1 \quad, \quad l=1 \quad \text { (PC-CoxR) }
$$

Components 4 and 5 have the smallest p -values.
Only component 5 has a p-value <0.05 (0.002).

An application to life-history analysis

2. Results

$$
s=1 \quad, \quad l=1 \quad \text { (PC-CoxR) }
$$

Components 4 and 5 have the smallest p -values.
Only component 5 has a p-value <0.05 (0.002).

Interpretation is weak.

Only variable with high cosine on the $(4,5)$ plane: age-gap.

An application to life-history analysis

2. Results

$$
s=10^{-3} \quad ; \quad l=1 \quad ; \quad \tau=1
$$

An application to life-history analysis

2. Results

$$
s=10^{-3} \quad ; \quad l=1 \quad ; \quad \tau=1
$$

An application to life-history analysis

2. Results

$$
s=10^{-3} \quad ; \quad l=1 \quad ; \quad \tau=1
$$

An application to life-history analysis

2. Results

Best values :

$$
s=0.9 \quad ; \quad l=8 \quad ; \quad \tau=1
$$

An application to life-history analysis

2. Results

Best values :

$$
s=0.9 \quad ; \quad l=8 \quad ; \quad \tau=1
$$

An application to life-history analysis

2. Results

Best values :

$$
s=0.9 \quad ; \quad l=8 \quad ; \quad \tau=1
$$

An application to life-history analysis

2. Results

Best values :

$$
s=0.9 \quad ; \quad l=8 \quad ; \quad \tau=1
$$

Offspring size

An application to life-history analysis

2. Results

Best values :

$$
s=0.9 \quad ; \quad l=8 \quad ; \quad \tau=1
$$

Offspring size \& high education

An application to life-history analysis

2. Results

Best values :

$$
s=0.9 \quad ; \quad l=8 \quad ; \quad \tau=1
$$

An application to life-history analysis

2. Results

Best values :

$$
s=0.9
$$

$$
; \quad l=8
$$

$$
; \quad \tau=1
$$

Places of birth and infancy

Dakar

An application to life-history analysis

2. Results

Best values :

$$
s=0.9
$$

$$
; \quad l=8
$$

$$
; \quad \tau=1
$$

Correlation with supervised component 6

An application to life-history analysis

2. Results

Best values :

$$
s=0.9 \quad ; \quad l=8 \quad ; \quad \tau=1
$$

An application to life-history analysis

2. Results

Variable-coefficients
(with 0.95 IC) :

Variable $\beta^{\beta}{ }^{(5)}$	nation: Senegal $-0.009[-0.022 ; 0.004]$ $0.006[-0.003 ; 0.016]$		$\begin{gathered} \text { nation: Guinea } \\ 0.022[-0.030 ; 0.075] \\ -0.014[-0.035 ; 0.007] \end{gathered}$	$\begin{gathered} \text { nation: Mali } \\ -0.044[-0.202 ; 0.113] \\ -0.089[-0.247 ; 0.068] \end{gathered}$
Variable	nation: Benin	father deceased	mother deceased	parents divorced
$\beta^{(5)}$	-0.050 [-0.113;0.013]	-0.020 [-0.352;0.312]	0.128 [-0.388;0.644]	$-0.056[-0.489 ; 0.377]$
$\beta^{(5)}$	-0.023 [-0.086;0.040]	-0.033 [-0.647;0.580]	0.150 [-0.490;0.790]	-0.072 [-0.232;0.089]
Variable$\beta^{\beta(5)}$	marriage-rank	consent	age gap	education: none
	0.000 [-0.030;0.030]	-0.112 [-1.148;0.923]	-0.208* [-0.237;-0.179]	0.037 [-0.582;0.655]
	0.000 [-0.035;0.035]	-0.075 [-1.265;1.116]	-0.414* [-0.450;-0.378]	0.063 [-0.022;0.149]
$\begin{gathered} \text { Variable } \\ \beta^{(5)} \end{gathered}$	education: coranic	education: primary	education: secondary	father education: none
	$0.054[-0.434 ; 0.542]$	0.033 [-0.583;0.649]	-0.099 [-0.342;0.144]	-0.089 [-0.398;0.220]
	0.056 [-0.049;0.161]	0.061 [-0.323;0.445]	-0.143* [-0.273;-0.013]	-0.103 [-0.685;0.478]
Variable$\beta^{\beta^{(5)}}$	father education: coranic	father education: primary	father education: secondary	father education: non-available
	0.200 [-0.157;0.557]	$-0.060[-0.589 ; 0.468]$	-0.047 [-0.635;0.541]	-0.115 [-0.551;0.320]
	0.154 [-0.338;0.645]	-0.024 [-0.477;0.429]	-0.025 [-0.125;0.076]	-0.077 [-0.247;0.093]
$\begin{gathered} \text { Variable } \\ \beta(5) \\ \beta^{(5)} \end{gathered}$	mother education: none	mother education: coranic	mother education: primary	mother education: secondary
	-0.127 [-0.402;0.147]	0.069 [-0.590;0.728]	0.051 [-0.985;1.086]	0.061 [-0.974;1.097]
	-0.109 [-0.424;0.205]	-0.014 [-0.574;0.547]	0.101 [-0.343;0.544]	$0.094[-0.349 ; 0.538]$
Variable$\beta^{\beta(5)}$	mother education: non-available	ethnic group: Wolof	ethnic group: Pular	ethnic group: Serer
	$0.065[-0.710 ; 0.839]$	0.078 [-0.303;0.459]	-0.043 [-0.594;0.507]	0.014 [-0.693;0.721]
	0.113 [-0.738;0.964]	0.093 [-0.116;0.303]	-0.084 [-0.324;0.156]	0.029 [-0.822;0.880]
$\begin{gathered} \text { Variable } \\ \beta^{(5)} \end{gathered}$	ethnic group: Diola	ethnic group: other	religion: tidjan	religion: murid
	-0.071 [-0.548;0.406]	-0.017 [-0.368;0.333]	-0.070 [-0.331;0.192]	0.067 [-0.204; 0.339]
	-0.053 [-0.545;0.439]	-0.022 [-0.425;0.381]	-0.091 [-0.506;0.324]	0.043 [-0.414;0.500]
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	religion: other muslim	religion: christian	age at first marriage: 16 to 24	age at first marriage: 25 to 29
	0.121 [-0.450;0.693]	-0.133* [-0.205;-0.061]	$0.176[-0.289 ; 0.642]$	$0.102[-0.298 ; 0.502]$
	$0.141[-0.465 ; 0.746]$	-0.085* [-0.156;-0.015]	0.221 [-0.156;-0.015]	$0.134[-0.147 ; 0.415]$
Variable$\beta^{\beta}{ }^{(5)}$	age at first marriage: 30 to 34	age at first marriage: 35 to 46	choice of first marriage: ego	choice of first marriage: mutual
	-0.201* [-0.395;-0.007]	-0.154* [-0.288;-0.021]	-0.020 [-0.371;0.330]	-0.048 [-0.304;0.208]
	$-0.176[-0.567 ; 0.215]$	-0.300* [-0.563;-0.037]	-0.004 [-0.149;0.142]	-0.037 [-0.274;0.201]
Variable $\beta^{(5)}$	choice of first marriage: parents	first wife related to ego's father	first wife related to ego's mother	first wife unrelated to ego
	0.087 [-0.394;0.568]	$0.080[-0.260 ; 0.420]$	$0.155^{*}[0.071 ; 0.239]$	-0.201* [-0.343;-0.058]
	0.052 [-0.336;0.439]	$0.136[-0.497 ; 0.769]$	$0.196[-0.152 ; 0.543]$	-0.283* [-0.312;-0.254]
Variable$\beta^{\beta}(5)$	age of first wife at marriage: non-available	age of first wife at marriage: 13 to 16	age of first wife at marriage: 17 to 19	age of first wife at marriage: 20 to 24
	-0.086 [-0.581;0.409]	$0.140[-0.128 ; 0.409]$	$0.010[-0.265 ; 0.285]$	-0.067 [-0.536;0.402]
	-0.107 [-0.226;0.012]	$0.089[-0.377 ; 0.555]$	-0.030 [-0.437; 0.376]	-0.046 [-0.529;0.436]
Variable$\beta^{\beta}{ }^{(5)}$	age of first wife at marriage: 25 to 37	place of birth: Dakar	place of birth: rural area	place of birth: other city
	-0.053 [-0.522;0.415]	-0.087 [-0.263;0.088]	0.139* [0.022;0.256]	-0.053* [-0.103;-0.003]
	0.040 [-0.425;0.505]	-0.011 [-0.328;0.307]	$0.062 *$ [0.011;0.114]	-0.056 [-0.418;0.306]
Variable $\beta^{\beta}{ }^{(5)}$	place of infancy: Dakar	place of infancy: rural area	place of infancy: other city	first wife never married
	-0.160* [-0.292;-0.029]	$0.132^{*}[0.009 ; 0.254]$	$0.043[-0.284 ; 0.370]$	0.027 [-0.410;0.463]
	-0.123* [-0.238;-0.008]	0.059* [0.009;0.109]	0.078 [-0.232;0.388]	0.021 [-0.425;0.466]

An application to life-history analysis

2. Results

Variable-coefficients

 (with 0.95 IC) :- The younger ego's wife is relative to him, the lower the risk.

$\begin{gathered} \text { Variable } \\ \beta{ }^{(5)} \end{gathered}$	$\begin{gathered} \text { nation: Senegal } \\ -0.009[-0.022 ; 0.004] \\ 0.006[-0.003 ; 0.016] \end{gathered}$	$\begin{aligned} & \text { nation: Bissau-Guinea } \\ & 0.062 \\ & 0.087[-0.222 ; 0.347] \\ & {[-0.126 ; 0.300]} \end{aligned}$	$\begin{gathered} \text { nation: Guinea } \\ 0.022[-0.030 ; 0.075] \\ -0.014[-0.035 ; 0.007] \end{gathered}$	$\begin{gathered} \text { nation: Mali } \\ -0.044[-0.202 ; 0.113] \\ -0.089[-0.247 ; 0.068] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	nation: Benin $-0.050[-0.113 ; 0.013]$ $-0.023[-0.086 ; 0.040]$	father deceased $-0.020[-0.352 ; 0.312]$ $-0.033[-0.647 ; 0.580]$	mother deceased $0.128[-0.388 ; 0.644]$ $0.150[-0.490 ; 0.790]$	parents divorced $-0.056[-0.489 ; 0.377]$ $-0.072[-0.232 ; 0.089]$
$\begin{gathered} \text { Variable } \\ \beta(5) \\ \beta^{(s)} \end{gathered}$	marriage-rank $0.000[-0.030 ; 0.030]$ $0.000[-0.035 ; 0.035]$	$\begin{gathered} \text { consent } \\ -0.112[-1.148 ; 0.923] \\ -0.075[-1.265 ; 1.116] \end{gathered}$	$\begin{gathered} \text { age gap } \\ -0.208^{*}[-0.237 ;-0.179] \\ -0.414^{*}[-0.450 ;-0.378] \end{gathered}$	education: none $0.037[-0.582 ; 0.655]$ $0.063[-0.022 ; 0.149]$
$\begin{gathered} \text { Variable } \\ \beta^{(5)} \end{gathered}$	education: coranic $0.054[-0.434 ; 0.542]$ $0.056[-0.049 ; 0.161]$	education: primary $0.033[-0.583 ; 0.649]$ $0.061[-0.323 ; 0.445]$	education: secondary $-0.099[-0.342 ; 0.144]$ $-0.143^{*}[-0.273 ;-0.013]$	father education: none $-0.089[-0.398 ; 0.220]$ $-0.103[-0.685 ; 0.478]$
Variable $\beta^{\beta}{ }^{(5)}$	$\begin{gathered} \text { father education: coranic } \\ 0.200[-0.157 ; 0.557] \\ 0.154[-0.338 ; 0.645] \end{gathered}$	father education: primary $-0.060[-0.589 ; 0.468]$ -0.024 [-0.477;0.429]	father education: secondary $-0.047[-0.635 ; 0.541]$ $-0.025[-0.125 ; 0.076]$	father education: non-available $\begin{aligned} & -0.115[-0.551 ; 0.320] \\ & -0.077[-0.247 ; 0.093] \end{aligned}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	mother education: none -0.127 [-0.402;0.147] -0.109 [-0.424;0.205]	$\begin{gathered} \text { mother education: coranic } \\ 0.069[-0.590 ; 0.728] \\ -0.014[-0.574 ; 0.547] \end{gathered}$	mother education: primary $0.051[-0.985 ; 1.086]$ $0.101[-0.343 ; 0.544]$	$\begin{gathered} \text { mother education: secondary } \\ 0.061[-0.974 ; 1.097] \\ 0.094[-0.349 ; 0.538] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	mother education: non-available 0.065 [-0.710;0.839] 0.113 [-0.738;0.964]	ethnic group: Wolof $0.078[-0.303 ; 0.459]$ $0.093[-0.116 ; 0.303]$	ethnic group: Pular $-0.043[-0.594 ; 0.507]$ $-0.084[-0.324 ; 0.156]$	ethnic group: Serer $0.014[-0.693 ; 0.721]$ $0.029[-0.822 ; 0.880]$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	ethnic group: Diola $-0.071[-0.548 ; 0.406]$ -0.053 [-0.545;0.439]	ethnic group: other $-0.017[-0.368 ; 0.333]$ $-0.022[-0.425 ; 0.381]$	$\begin{gathered} \text { religion: tidjan } \\ -0.070[-0.331 ; 0.192] \\ -0.091[-0.506 ; 0.324] \end{gathered}$	religion: murid $0.067[-0.204 ; 0.339]$ $0.043[-0.414 ; 0.500]$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	religion: other muslim 0.121 [$-0.450 ; 0.693]$ 0.141 [-0.465;0.746]	$\begin{gathered} \text { religion: christian } \\ -0.133^{*}[-0.205 ;-0.061] \\ -0.085^{*}[-0.156 ;-0.015] \end{gathered}$	$\begin{gathered} \text { age at first marriage: } 16 \text { to } 24 \\ 0.176[-0.289 ; 0.642] \\ 0.221[-0.156 ;-0.015] \end{gathered}$	$\begin{gathered} \text { age at first marriage: } 25 \text { to } 29 \\ 0.102[-0.298 ; 0.502] \\ 0.134[-0.147 ; 0.415] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \\ \boldsymbol{\beta}^{(5)} \end{gathered}$	$\begin{gathered} \text { age at first marriage: } 30 \text { to } 34 \\ -0.201^{*}[-0.395 ;-0.007] \\ -0.176[-0.567 ; 0.215] \end{gathered}$	age at first marriage: 35 to 46 $-0.154^{*}[-0.288 ;-0.021]$ $-0.300^{*}[-0.563 ;-0.037]$	choice of first marriage: ego $\begin{aligned} & -0.020[-0.371 ; 0.330] \\ & -0.004[-0.149 ; 0.142] \end{aligned}$	choice of first marriage: mutual $\begin{aligned} & -0.048[-0.304 ; 0.208] \\ & -0.037[-0.274 ; 0.201] \end{aligned}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	choice of first marriage: parents $\begin{aligned} & 0.087[-0.394 ; 0.568] \\ & 0.052[-0.336 ; 0.439] \end{aligned}$	first wife related to ego's father $\begin{aligned} & 0.080[-0.260 ; 0.420] \\ & 0.136[-0.497 ; 0.769] \end{aligned}$	first wife related to ego's mother $0.155 *[0.071 ; 0.239]$ $0.196[-0.152 ; 0.543]$	first wife unrelated to ego $-0.201 *[-0.343 ;-0.058]$ $-0.283^{*}[-0.312 ;-0.254]$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	age of first wife at marriage: non-available $\begin{aligned} & -0.086[-0.581 ; 0.409] \\ & -0.107[-0.226 ; 0.012] \end{aligned}$	age of first wife at marriage: 13 to 16 $\begin{aligned} & 0.140[-0.128 ; 0.409] \\ & 0.089[-0.377 ; 0.555] \end{aligned}$	$\begin{gathered} \text { age of first wife at marriage: } 17 \text { to } 19 \\ 0.010[-0.265 ; 0.285] \\ -0.030[-0.437 ; 0.376] \end{gathered}$	age of first wife at marriage: 20 to 24 $\begin{aligned} & -0.067[-0.536 ; 0.402] \\ & -0.046[-0.529 ; 0.436] \end{aligned}$
$\begin{gathered} \text { Variable } \\ \beta^{(5)} \end{gathered}$	age of first wife at marriage: 25 to 37 $\begin{aligned} & -0.053[-0.522 ; 0.415] \\ & 0.040[-0.425 ; 0.505] \end{aligned}$	$\begin{gathered} \text { place of birth: Dakar } \\ -0.087[-0.263 ; 0.088] \\ -0.011[-0.328 ; 0.307] \end{gathered}$	place of birth: rural area $0.139 *[0.022 ; 0.256]$ 0.062^{*} [0.011;0.114]	place of birth: other city $-0.053^{*}[-0.103 ;-0.003]$ -0.056 [$-0.418 ; 0.306]$
$\begin{gathered} \text { Variable } \\ \beta \text { } \\ \beta^{(5)} \end{gathered}$	$\begin{aligned} & \text { place of infancy: Dakar } \\ & -0.160^{*}[-0.292 ;-0.029] \\ & -0.123^{*}[-0.238 ;-0.008] \end{aligned}$	place of infancy: rural area $0.132 *[0.009 ; 0.254]$ $0.059 *[0.009 ; 0.109]$	$\begin{gathered} \text { place of infancy: other city } \\ 0.043[-0.284 ; 0.370] \\ 0.078[-0.232 ; 0.388] \end{gathered}$	$\begin{gathered} \text { first wife never married } \\ 0.027[-0.410 ; 0.463] \\ 0.021[-0.425 ; 0.466] \end{gathered}$

An application to life-history analysis

2. Results

Variable-coefficients (with 0.95 IC) :

- The younger ego's wife is relative to him, the lower the risk.
- The older ego is at first marriage, the lower the risk.

$\begin{gathered} \text { Variable } \\ \beta{ }^{(5)} \end{gathered}$	$\begin{gathered} \text { nation: Senegal } \\ -0.009[-0.022 ; 0.004] \\ 0.006[-0.003 ; 0.016] \end{gathered}$	$\begin{aligned} & \text { nation: Bissau-Guinea } \\ & 0.062 \\ & 0.087[-0.222 ; 0.347] \\ & {[-0.126 ; 0.300]} \end{aligned}$	$\begin{gathered} \text { nation: Guinea } \\ 0.022[-0.030 ; 0.075] \\ -0.014[-0.035 ; 0.007] \end{gathered}$	$\begin{gathered} \text { nation: Mali } \\ -0.044[-0.202 ; 0.113] \\ -0.089[-0.247 ; 0.068] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	nation: Benin $-0.050[-0.113 ; 0.013]$ $-0.023[-0.086 ; 0.040]$	$\begin{gathered} \text { father deceased } \\ -0.020[-0.352 ; 0.312] \\ -0.033[-0.647 ; 0.580] \end{gathered}$	mother deceased $0.128[-0.388 ; 0.644]$ $0.150[-0.490 ; 0.790]$	parents divorced $-0.056[-0.489 ; 0.377]$ $-0.072[-0.232 ; 0.089]$
$\begin{gathered} \text { Variable } \\ \beta(5) \\ \beta^{(s)} \end{gathered}$	marriage-rank $0.000[-0.030 ; 0.030]$ $0.000[-0.035 ; 0.035]$	$\begin{gathered} \text { consent } \\ -0.112[-1.148 ; 0.923] \\ -0.075[-1.265 ; 1.116] \end{gathered}$	$\begin{gathered} \text { age gap } \\ -0.208^{*}[-0.237 ;-0.179] \\ -0.414^{*}[-0.450 ;-0.378] \end{gathered}$	education: none $0.037[-0.582 ; 0.655]$ $0.063[-0.022 ; 0.149]$
$\begin{gathered} \text { Variable } \\ \beta^{(5)} \end{gathered}$	education: coranic $0.054[-0.434 ; 0.542]$ $0.056[-0.049 ; 0.161]$	education: primary $0.033[-0.583 ; 0.649]$ $0.061[-0.323 ; 0.445]$	education: secondary $-0.099[-0.342 ; 0.144]$ $-0.143^{*}[-0.273 ;-0.013]$	father education: none $-0.089[-0.398 ; 0.220]$ $-0.103[-0.685 ; 0.478]$
Variable $\beta^{\beta}{ }^{(5)}$	$\begin{gathered} \text { father education: coranic } \\ 0.200[-0.157 ; 0.557] \\ 0.154[-0.338 ; 0.645] \end{gathered}$	father education: primary $-0.060[-0.589 ; 0.468]$ -0.024 [-0.477;0.429]	father education: secondary $-0.047[-0.635 ; 0.541]$ $-0.025[-0.125 ; 0.076]$	father education: non-available $\begin{aligned} & -0.115[-0.551 ; 0.320] \\ & -0.077[-0.247 ; 0.093] \end{aligned}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	mother education: none -0.127 [-0.402;0.147] -0.109 [-0.424;0.205]	$\begin{gathered} \text { mother education: coranic } \\ 0.069[-0.590 ; 0.728] \\ -0.014[-0.574 ; 0.547] \end{gathered}$	mother education: primary $0.051[-0.985 ; 1.086]$ $0.101[-0.343 ; 0.544]$	$\begin{gathered} \text { mother education: secondary } \\ 0.061[-0.974 ; 1.097] \\ 0.094[-0.349 ; 0.538] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	mother education: non-available 0.065 [-0.710;0.839] 0.113 [-0.738;0.964]	ethnic group: Wolof $0.078[-0.303 ; 0.459]$ $0.093[-0.116 ; 0.303]$	ethnic group: Pular $-0.043[-0.594 ; 0.507]$ $-0.084[-0.324 ; 0.156]$	ethnic group: Serer $0.014[-0.693 ; 0.721]$ $0.029[-0.822 ; 0.880]$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	ethnic group: Diola $-0.071[-0.548 ; 0.406]$ -0.053 [-0.545;0.439]	ethnic group: other $-0.017[-0.368 ; 0.333]$ $-0.022[-0.425 ; 0.381]$	$\begin{gathered} \text { religion: tidjan } \\ -0.070[-0.331 ; 0.192] \\ -0.091[-0.506 ; 0.324] \end{gathered}$	religion: murid $0.067[-0.204 ; 0.339]$ $0.043[-0.414 ; 0.500]$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	religion: other muslim 0.121 [$-0.450 ; 0.693]$ 0.141 [-0.465;0.746]	$\begin{gathered} \text { religion: christian } \\ -0.133^{*}[-0.205 ;-0.061] \\ -0.085^{*}[-0.156 ;-0.015] \\ \hline \end{gathered}$	$\begin{gathered} \text { age at first marriage: } 16 \text { to } 24 \\ 0.176[-0.289 ; 0.642] \\ 0.221[-0.156 ;-0.015] \end{gathered}$	$\begin{gathered} \text { age at first marriage: } 25 \text { to } 29 \\ 0.102[-0.298 ; 0.502] \\ 0.134[-0.147 ; 0.415] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta^{(5)} \end{gathered}$	$\begin{gathered} \text { age at first marriage: } 30 \text { to } 34 \\ -0.2011^{*}[-0.395 ;-0.007] \\ -0.176[-0.567 ; 0.215] \\ \hline \end{gathered}$	$\begin{gathered} \text { age at first marriage: } 35 \text { to } 46 \\ -0.154 *[-0.288 ;-0.021] \\ -0.300^{*}[-0.563 ;-0.037] \\ \hline \end{gathered}$	choice of first marriage: ego $\begin{aligned} & -0.020[-0.371 ; 0.330] \\ & -0.004[-0.149 ; 0.142] \end{aligned}$	choice of first marriage: mutual -0.048 [-0.304;0.208] -0.037 [-0.274;0.201]
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	choice of first marriage: parents $0.087[-0.394 ; 0.568]$ $0.052[-0.336 ; 0.439]$	first wife related to ego's father $\begin{aligned} & 0.080[-0.260 ; 0.420] \\ & 0.136[-0.497 ; 0.769] \end{aligned}$	first wife related to ego's mother $0.155 *[0.071 ; 0.239]$ $0.196[-0.152 ; 0.543]$	first wife unrelated to ego $-0.201 *[-0.343 ;-0.058]$ $-0.283^{*}[-0.312 ;-0.254]$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	age of first wife at marriage: non-available $\begin{aligned} & -0.086[-0.581 ; 0.409] \\ & -0.107[-0.226 ; 0.012] \end{aligned}$	age of first wife at marriage: 13 to 16 $\begin{aligned} & 0.140[-0.128 ; 0.409] \\ & 0.089[-0.377 ; 0.555] \end{aligned}$	$\begin{gathered} \text { age of first wife at marriage: } 17 \text { to } 19 \\ 0.010[-0.265 ; 0.285] \\ -0.030[-0.437 ; 0.376] \end{gathered}$	age of first wife at marriage: 20 to 24 $\begin{aligned} & -0.067[-0.536 ; 0.402] \\ & -0.046[-0.529 ; 0.436] \end{aligned}$
$\begin{gathered} \text { Variable } \\ \beta^{(5)} \end{gathered}$	age of first wife at marriage: 25 to 37 $\begin{aligned} & -0.053[-0.522 ; 0.415] \\ & 0.040[-0.425 ; 0.505] \end{aligned}$	$\begin{gathered} \text { place of birth: Dakar } \\ -0.087[-0.263 ; 0.088] \\ -0.011[-0.328 ; 0.307] \end{gathered}$	place of birth: rural area $0.139 *[0.022 ; 0.256]$ 0.062^{*} [0.011;0.114]	place of birth: other city $-0.053^{*}[-0.103 ;-0.003]$ -0.056 [$-0.418 ; 0.306]$
$\begin{gathered} \text { Variable } \\ \beta \text { } \\ \beta^{(5)} \end{gathered}$	$\begin{aligned} & \text { place of infancy: Dakar } \\ & -0.160^{*}[-0.292 ;-0.029] \\ & -0.123^{*}[-0.238 ;-0.008] \end{aligned}$	place of infancy: rural area $0.132 *[0.009 ; 0.254]$ $0.059 *[0.009 ; 0.109]$	$\begin{gathered} \text { place of infancy: other city } \\ 0.043[-0.284 ; 0.370] \\ 0.078[-0.232 ; 0.388] \end{gathered}$	$\begin{gathered} \text { first wife never married } \\ 0.027[-0.410 ; 0.463] \\ 0.021[-0.425 ; 0.466] \end{gathered}$

An application to life-history analysis

2. Results

Variable-coefficients (with 0.95 IC) :

- The younger ego's wife is relative to him, the lower the risk.
- The older ego is at first marriage, the lower the risk.
- A wife unrelated to ego lowers the risk.
- A wife related to ego's mother increases the risk.

$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	$\begin{gathered} \text { nation: Senegal } \\ -0.009[-0.022 ; 0.004] \\ 0.006[-0.003 ; 0.016] \end{gathered}$	nation: Bissau-Guinea $0.062[-0.222 ; 0.347]$ $0.087[-0.126 ; 0.300]$	$\begin{gathered} \text { nation: Guinea } \\ 0.022[-0.030 ; 0.075] \\ -0.014[-0.035 ; 0.007] \end{gathered}$	$\begin{gathered} \text { nation: Mali } \\ -0.044[-0.202 ; 0.113] \\ -0.089[-0.247 ; 0.068] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta^{(5)} \end{gathered}$	nation: Benin	father deceased	mother deceased	parents divorced
	-0.050 [-0.113;0.013]	-0.020 [-0.352;0.312]	0.128 [-0.388;0.644]	-0.056 [-0.489;0.377]
	-0.023 [-0.086;0.040]	-0.033 [-0.647;0.580]	0.150 [-0.490;0.790]	-0.072 [-0.232;0.089]
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	marriage-rank	consent	age gap	education: none
	$0.000[-0.030 ; 0.030]$	-0.112 [-1.148;0.923]	-0.208* [-0.237;-0.179]	0.037 [-0.582;0.655]
	0.000 [-0.035;0.035]	-0.075 [-1.265;1.116]	$-0.414^{*}[-0.450 ;-0.378]$	0.063 [-0.022;0.149]
$\begin{gathered} \text { Variable } \\ \beta^{(5)} \end{gathered}$	education: coranic	education: primary	education: secondary	father education: none
	$0.054[-0.434 ; 0.542]$	$0.033[-0.583 ; 0.649]$	-0.099 [-0.342;0.144]	-0.089 [-0.398;0.220]
	$0.056[-0.049 ; 0.161]$	0.061 [-0.323;0.445]	-0.143* [-0.273;-0.013]	-0.103 [-0.685;0.478]
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	father education: coranic	father education: primary	father education: secondary	father education: non-available
	0.200 [-0.157;0.557]	-0.060 [-0.589;0.468]	-0.047 [-0.635;0.541]	-0.115 [-0.551;0.320]
	0.154 [-0.338;0.645]	-0.024 [-0.477;0.429]	-0.025 [-0.125;0.076]	-0.077 [-0.247;0.093]
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	mother education: none	mother education: coranic	mother education: primary	mother education: secondary
	-0.127 [-0.402;0.147]	0.069 [-0.590;0.728]	0.051 [-0.985;1.086]	0.061 [-0.974;1.097]
	-0.109 [-0.424;0.205]	-0.014 [-0.574;0.547]	0.101 [-0.343;0.544]	0.094 [-0.349;0.538]
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	mother education: non-available	ethnic group: Wolof	ethnic group: Pular	ethnic group: Serer
	$0.065[-0.710 ; 0.839]$	0.078 [-0.303;0.459]	-0.043 [-0.594;0.507]	0.014 [-0.693;0.721]
	0.113 [-0.738;0.964]	0.093 [-0.116;0.303]	-0.084 [-0.324;0.156]	0.029 [-0.822;0.880]
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	ethnic group: Diola	ethnic group: other	religion: tidjan	religion: murid
	-0.071 [-0.548;0.406]	-0.017 [-0.368;0.333]	-0.070 [-0.331;0.192]	0.067 [-0.204; 0.339]
	-0.053 [-0.545;0.439]	-0.022 [-0.425;0.381]	-0.091 [-0.506;0.324]	0.043 [-0.414;0.500]
$\begin{gathered} \text { Variable } \\ \beta(5) \\ \beta^{(5)} \end{gathered}$		religion: christian	age at first marriage: 16 to 24	age at first marriage: 25 to 29
	$0.121[-0.450 ; 0.693]$	-0.133* [-0.205;-0.061]	$0.176[-0.289 ; 0.642]$	$0.102[-0.298 ; 0.502]$
		-0.085* [-0.156;-0.015]	0.221 [-0.156;-0.015]	$0.134[-0.147 ; 0.415]$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	age at first marriage: 30 to 34	age at first marriage: 35 to 46	choice of first marriage: ego	choice of first marriage: mutual
	-0.201* [-0.395;-0.007]	-0.154* [-0.288;-0.021]	-0.020 [-0.37 1;0.330]	-0.048 [-0.304;0.208]
	-0.176 [-0.567;0.215]	$-0.300^{*}[-0.563 ;-0.037]$	-0.004 [-0.149;0.142]	-0.037 [-0.274;0.201]
$\begin{gathered} \text { Variable } \\ \beta \beta^{(5)} \end{gathered}$	choice of first marriage: parents	first wife related to ego's father	first wife related to ego's mother	first wife unrelated to ego
	$0.087[-0.394 ; 0.568]$	$0.080[-0.260 ; 0.420]$	$0.155^{*}[0.071 ; 0.239]$	-0.201* [-0.343;-0.058]
	0.052 [-0.336;0.439]	$0.136[-0.497 ; 0.769]$	$0.196[-0.152 ; 0.543]$	-0.283* [-0.312;-0.254]
$\begin{gathered} \text { Variable } \\ \beta^{(5)} \end{gathered}$	age of first wife at marriage: non-available	age of first wife at marriage: 13 to 16	age of first wife at marriage: 17 to 19	age of first wife at marriage: 20 to 24
	-0.086 [-0.581;0.409]	0.140 [-0.128;0.409]	$0.010[-0.265 ; 0.285]$	-0.067 [-0.536;0.402]
	-0.107 [-0.226;0.012]	$0.089[-0.377 ; 0.555]$	-0.030 [-0.437; 0.376]	-0.046 [-0.529;0.436]
$\begin{gathered} \text { Variable } \\ \beta^{(5)} \end{gathered}$	age of first wife at marriage: 25 to 37	place of birth: Dakar	place of birth: rural area	place of birth: other city
	-0.053 [-0.522;0.415]	-0.087 [-0.263;0.088]	$0.139 *[0.022 ; 0.256]$	-0.053* [-0.103;-0.003]
	0.040 [-0.425;0.505]	-0.011 [-0.328;0.307]	0.062* [0.011;0.114]	-0.056 [-0.418;0.306]
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	place of infancy: Dakar	place of infancy: rural area	place of infancy: other city	first wife never married
	$0.160^{*}[-0.292 ;-0.029]$	$0.132 *[0.009 ; 0.254]$	$0.043[-0.284 ; 0.370]$	0.027 [-0.410;0.463]
	-0.123* [-0.238;-0.008]	0.059* [0.009;0.109]	0.078 [-0.232;0.388]	0.021 [-0.425;0.466]

An application to life-history analysis

2. Results

Variable-coefficients

(with 0.95 IC) :

- The younger ego's wife is relative to him, the lower the risk.
- The older ego is at first marriage, the lower the risk.
- A wife unrelated to ego lowers the risk.
- A wife related to ego's mother increases the risk.
- Infancy in Dakar lowers the risk.
- Birth and infancy in a rural area increases the risk.

$\begin{gathered} \text { Variable } \\ \beta{ }^{(5)} \end{gathered}$	$\begin{gathered} \text { nation: Senegal } \\ -0.009[-0.022 ; 0.004] \\ 0.006[-0.003 ; 0.016] \end{gathered}$	$\begin{aligned} & \text { nation: Bissau-Guinea } \\ & 0.062 \\ & 0.087[-0.222 ; 0.347] \\ & {[-0.126 ; 0.300]} \end{aligned}$	$\begin{gathered} \text { nation: Guinea } \\ 0.022[-0.030 ; 0.075] \\ -0.014[-0.035 ; 0.007] \end{gathered}$	$\begin{gathered} \text { nation: Mali } \\ -0.044[-0.202 ; 0.113] \\ -0.089[-0.247 ; 0.068] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	nation: Benin $-0.050[-0.113 ; 0.013]$ $-0.023[-0.086 ; 0.040]$	father deceased $-0.020[-0.352 ; 0.312]$ $-0.033[-0.647 ; 0.580]$	mother deceased $0.128[-0.388 ; 0.644]$ $0.150[-0.490 ; 0.790]$	parents divorced $-0.056[-0.489 ; 0.377]$ $-0.072[-0.232 ; 0.089]$
$\begin{gathered} \text { Variable } \\ \beta(5) \\ \beta^{(s)} \end{gathered}$	marriage-rank $0.000[-0.030 ; 0.030]$ $0.000[-0.035 ; 0.035]$	$\begin{gathered} \text { consent } \\ -0.112[-1.148 ; 0.923] \\ -0.075[-1.265 ; 1.116] \end{gathered}$	$\begin{gathered} \text { age gap } \\ -0.208^{*}[-0.237 ;-0.179] \\ -0.414^{*}[-0.450 ;-0.378] \end{gathered}$	education: none $0.037[-0.582 ; 0.655]$ $0.063[-0.022 ; 0.149]$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	education: coranic $0.054[-0.434 ; 0.542]$ $0.056[-0.049 ; 0.161]$	education: primary $0.033[-0.583 ; 0.649]$ $0.061[-0.323 ; 0.445]$	education: secondary $-0.099[-0.342 ; 0.144]$ $-0.143^{*}[-0.273 ;-0.013]$	father education: none $-0.089[-0.398 ; 0.220]$ $-0.103[-0.685 ; 0.478]$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	$\begin{gathered} \text { father education: coranic } \\ 0.200[-0.157 ; 0.557] \\ 0.154[-0.338 ; 0.645] \end{gathered}$	father education: primary $-0.060[-0.589 ; 0.468]$ -0.024 [-0.477;0.429]	father education: secondary -0.047 [-0.635;0.541] $-0.025[-0.125 ; 0.076]$	father education: non-available $\begin{aligned} & -0.115[-0.551 ; 0.320] \\ & -0.077[-0.247 ; 0.093] \end{aligned}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	mother education: none -0.127 [-0.402;0.147] -0.109 [-0.424;0.205]	$\begin{gathered} \text { mother education: coranic } \\ 0.069[-0.590 ; 0.728] \\ -0.014[-0.574 ; 0.547] \end{gathered}$	$\begin{gathered} \text { mother education: primary } \\ 0.051[-0.985 ; 1.086] \\ 0.101[-0.343 ; 0.544] \end{gathered}$	$\begin{gathered} \text { mother education: secondary } \\ 0.061[-0.974 ; 1.097] \\ 0.094[-0.349 ; 0.538] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	mother education: non-available 0.065 [-0.710;0.839] 0.113 [-0.738;0.964]	ethnic group: Wolof $0.078[-0.303 ; 0.459]$ $0.093[-0.116 ; 0.303]$	ethnic group: Pular $-0.043[-0.594 ; 0.507]$ $-0.084[-0.324 ; 0.156]$	ethnic group: Serer $0.014[-0.693 ; 0.721]$ $0.029[-0.822 ; 0.880]$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	ethnic group: Diola $-0.071[-0.548 ; 0.406]$ -0.053 [-0.545;0.439]	ethnic group: other $-0.017[-0.368 ; 0.333]$ $-0.022[-0.425 ; 0.381]$	$\begin{gathered} \text { religion: tidjan } \\ -0.070[-0.331 ; 0.192] \\ -0.091[-0.506 ; 0.324] \end{gathered}$	religion: murid $0.067[-0.204 ; 0.339]$ $0.043[-0.414 ; 0.500]$
$\begin{gathered} \text { Variable } \\ \beta(5) \\ \boldsymbol{\beta}^{(5)} \end{gathered}$	religion: other muslim 0.121 [-0.450;0.693] 0.141 [-0.465;0.746]	$\begin{gathered} \text { religion: christian } \\ -0.133^{3}[-0.205 ;-0.061] \\ -0.085^{*}[-0.156 ;-0.015] \\ \hline \end{gathered}$	$\begin{gathered} \text { age at first marriage: } 16 \text { to } 24 \\ 0.176[-0.289 ; 0.642] \\ 0.221[-0.156 ;-0.015] \end{gathered}$	$\begin{gathered} \text { age at first marriage: } 25 \text { to } 29 \\ 0.102[-0.298 ; 0.502] \\ 0.134[-0.147 ; 0.415] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	$\begin{gathered} \text { age at first marriage: } 30 \text { to } 34 \\ -0.201^{*}[-0.395 ;-0.007] \\ -0.176[-0.567 ; 0.215] \\ \hline \end{gathered}$	$\begin{gathered} \text { age at first marriage: } 35 \text { to } 46 \\ -0.154^{*}[-0.288 ;-0.021] \\ -0.300^{*}[-0.563 ;-0.037] \\ \hline \end{gathered}$	choice of first marriage: ego $\begin{aligned} & -0.020[-0.371 ; 0.330] \\ & -0.004[-0.149 ; 0.142] \end{aligned}$	choice of first marriage: mutual $\begin{aligned} & -0.048[-0.304 ; 0.208] \\ & -0.037[-0.274 ; 0.201] \end{aligned}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	$\begin{gathered} \text { choice of first marriage: parents } \\ 0.087[-0.394 ; 0.568] \\ 0.052[-0.336 ; 0.439] \end{gathered}$	first wife related to ego's father $\begin{aligned} & 0.080[-0.260 ; 0.420] \\ & 0.136[-0.497 ; 0.769] \end{aligned}$	$\begin{gathered} \text { first wife related to ego's mother } \\ 0.155^{*}[0.071 ; 0.239] \\ 0.196[-0.152 ; 0.543] \end{gathered}$	first wife unrelated to ego $-0.201 *[-0.343 ;-0.058]$ $-0.283^{*}[-0.312 ;-0.254]$

$\begin{gathered} \text { Variable } \\ \beta^{(5)} \end{gathered}$	age of first wife at marriage: non-available $\begin{aligned} & -0.086[-0.581 ; 0.409] \\ & -0.107[-0.226 ; 0.012] \end{aligned}$	age of first wife at marriage: 13 to 16 $\begin{aligned} & 0.140[-0.128 ; 0.409] \\ & 0.089[-0.377 ; 0.555] \end{aligned}$	$\begin{gathered} \text { age of first wife at marriage: } 17 \text { to } 19 \\ 0.010[-0.265 ; 0.285] \\ -0.030[-0.437 ; 0.376] \end{gathered}$	age of first wife at marriage: 20 $\begin{aligned} & \left.-0.067[-0.536 ; 0.402]\left[\begin{array}{c} -0.40 \\ -0.046 \end{array}\right]-0.529 ; 0.436\right] \end{aligned}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	age of first wife at marriage: 25 to 37 $\begin{gathered} -0.053[-0.522 ; 0.415] \\ 0.040[-0.425 ; 0.505] \end{gathered}$	place of birth: Dakar $-0.087[-0.263 ; 0.088]$ $-0.011[-0.328 ; 0.307]$	$\begin{gathered} \text { place of birth: rural area } \\ 0.139^{*}[0.022 ; 0.256] \\ 0.062^{*}[0.011 ; 0.114] \\ \hline \end{gathered}$	place of birth: other city -0.053* [-0.103;-0.003] -0.056 [-0.418;0.306]
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	$\begin{aligned} & \text { place of infancy: Dakar } \\ & -0.160^{*}[-0.292 ;-0.029] \\ & -0.123^{*}[-0.238 ;-0.008] \\ & \hline \end{aligned}$	place of infancy: rural area $0.132 *[0.009 ; 0.254]$ $0.059^{*}[0.009 ; 0.109]$	$\begin{gathered} \text { place of infancy: other city } \\ 0.043[-0.284 ; 0.370] \\ 0.078[-0.232 ; 0.388] \end{gathered}$	first wife never married 0.027 [-0.410;0.463] 0.021 [-0.425;0.466]

An application to life-history analysis

2. Results

Variable-coefficients
(with 0.95 IC) :

$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	first wife once married -0.027 [-0.463;0.410] -0.021 [-0.466;0.425]	occupation of first wife: house-wife $\begin{aligned} & 0.024[-0.283 ; 0.332] \\ & 0.012[-0.283 ; 0.308] \end{aligned}$	$\begin{aligned} & \text { occupation of first wife: student } \\ & -0.092[-0.385 ; 0.202] \\ & -0.093[-0.803 ; 0.617] \end{aligned}$	occupation of first wife: employee $\begin{aligned} & -0.065[-0.441 ; 0.311] \\ & -0.050[-0.487 ; 0.387] \end{aligned}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	occupation of first wife: artisan $0.071[-0.985 ; 1.128]$ 0.066 [-0.709;0.841]	occupation of first wife: trade 0.058 [-0.862;0.978] 0.081 [-0.435;0.598]	occupation of first wife: agriculture $\begin{aligned} & 0.250[-0.807 ; 1.306] \\ & 0.188[-0.457 ; 0.834] \end{aligned}$	occupation of first wife: non-available $\begin{gathered} -0.063[-0.983 ; 0.858] \\ -0.053[-0.623 ; 0.517] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	$\begin{aligned} & \text { occupation: informal } \\ & -0.004[-0.309 ; 0.300] \\ & -0.010[-0.295 ; 0.275] \end{aligned}$	occupation: employee $0.133[-0.142 ; 0.408]$ 0.159 [-0.123;0.440]	occupation: apprentice -0.088 * [-0.162;-0.015] -0.071 [-0.542;0.400]	$\begin{gathered} \text { occupation: independent } \\ -0.051[-0.527 ; 0.424] \\ -0.105[-0.357 ; 0.148] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta{ }^{(5)} \end{gathered}$	$\begin{gathered} \text { occupation: student } \\ -0.039[-0.371 ; 0.293] \\ -0.062[-0.284 ; 0.159] \end{gathered}$	occupation: retired $-0.091[-0.583 ; 0.400]$ $-0.046[-0.248 ; 0.156]$	$\begin{gathered} \text { occupation: unemployed } \\ 0.003[-0.594 ; 0.600] \\ 0.022[-0.163 ; 0.207] \end{gathered}$	$\begin{gathered} \text { occupation: other inactive } \\ -0.071[-1.004 ; 0.863] \\ -0.042[-0.264 ; 0.180] \end{gathered}$
Variable $\beta^{\beta}{ }^{(5)}$	occupation: other with no income $\begin{aligned} & -0.097[-0.818 ; 0.625] \\ & -0.078[-0.325 ; 0.169] \end{aligned}$	residence: owner $0.021[-0.333 ; 0.376]$ 0.028 [-0.095;0.151]	$\begin{gathered} \text { residence: lodger } \\ -0.0862[-0.389 ; 0.216] \\ -0.076[-0.340 ; 0.188] \end{gathered}$	residence: family $0.014[-0.390 ; 0.418]$ 0.060 [-0.207;0.327]
$\begin{gathered} \text { Variable } \\ \beta{ }^{(5)} \end{gathered}$	$\begin{gathered} \text { residence: husband's parents } \\ 0.040[-0.363 ; 0.444] \\ 0.062[-0.160 ; 0.284] \end{gathered}$	$\begin{gathered} \text { residence: other parents } \\ 0.114[-0.290 ; 0.517] \\ 0.076[-0.361 ; 0.513] \end{gathered}$	residence: other $-0.089[-0.493 ; 0.315]$ $-0.133[-0.400 ; 0.134]$	$\begin{gathered} \text { number of sons } \\ -0.055[-0.170 ; 0.060] \\ -0.040[-0.095 ; 0.014] \end{gathered}$
Variable $\beta^{\beta(5)}$	number of daughters $-0.040[-0.114 ; 0.034]$ -0.039 [-0.127;0.050]	$\begin{gathered} \text { no son } \\ 0.010[-0.212 ; 0.419] \\ 0.060[-0.185 ; 0.306] \end{gathered}$	$\begin{gathered} 1 \text { son } \\ -0.054[-0.352 ; 0.244] \\ -0.062[-0.258 ; 0.134] \end{gathered}$	$\begin{gathered} 2 \text { sons } \\ -0.059[-0.582 ; 0.465] \\ -0.025[-0.470 ; 0.419] \end{gathered}$
Variable $\beta^{\beta}{ }^{(5)}$	$\begin{gathered} 3 \text { sons } \\ -0.023[-0.850 ; 0.805] \\ 0.031[-0.393 ; 0.454] \end{gathered}$	$\begin{gathered} 4 \text { sons } \\ -0.039[-0.490 ; 0.411] \\ -0.022[-0.144 ; 0.101] \end{gathered}$	5 sons or more $0.051[-0.399 ; 0.501]$ $0.014[-0.109 ; 0.137]$	$\begin{gathered} \text { no daughter } \\ 0.015[-0.267 ; 0.297] \\ -0.003[-0.130 ; 0.124] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	$\begin{gathered} 1 \text { daughter } \\ -0.121[-0.493 ; 0.252] \\ -0.076[-0.245 ; 0.092] \end{gathered}$	$\begin{gathered} 2 \text { daughters } \\ 0.164[-0.228 ; 0.557] \\ 0.141[-0.003 ; 0.285] \end{gathered}$	$\begin{gathered} 3 \text { daughters } \\ 0.051[-0.690 ; 0.793] \\ 0.037[-0.603 ; 0.676] \end{gathered}$	$\begin{gathered} 4 \text { daughters } \\ -0.084[-0.806 ; 0.638] \\ -0.084[-0.458 ; 0.289] \end{gathered}$
Variable $\beta^{\beta(5)}$	$\begin{gathered} 5 \text { daughters or more } \\ -0.085[-0.807 ; 0.637] \\ -0.072[-0.569 ; 0.426] \end{gathered}$	$\begin{gathered} \text { number of children } \\ -0.058^{*}[-0.110 ;-0.007] \\ -0.048^{*}[-0.090 ;-0.006] \end{gathered}$	$\begin{gathered} \text { no child } \\ 0.049[-0.112 ; 0.210] \\ -0.009[-0.279 ; 0.262] \end{gathered}$	$\begin{gathered} 1 \text { child } \\ 0.012[-0.388 ; 0.411] \\ 0.014[-0.491 ; 0.520] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	$\begin{gathered} 2 \text { children } \\ -0.044[-0.599 ; 0.512] \\ -0.023[-0.501 ; 0.455] \end{gathered}$	$\begin{gathered} 3 \text { children } \\ 0.098[-0.524 ; 0.720] \\ 0.129[-0.286 ; 0.544] \end{gathered}$	$\begin{gathered} 4 \text { children } \\ -0.144[-1.049 ; 0.761] \\ -0.135[-0.799 ; 0.529] \end{gathered}$	5 children or more $0.003[-0.423 ; 0.430]$ $0.007[-0.427 ; 0.441]$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	$\begin{gathered} \text { no child out of marriage } \\ -0.017[-0.692 ; 0.657] \\ -0.035[-0.644 ; 0.575] \end{gathered}$	child out of marriage 0.017 [-0.657;0.692] 0.035 [$[-0.575 ; 0.644]$	$\begin{gathered} \text { age gap: } 0 \text { to } 3 \\ 0.121^{*}[0.015 ; 0.227] \\ 0.196^{*}[0.018 ; 0.374] \end{gathered}$	$\begin{gathered} \text { age gap: } 4 \text { to } 7 \\ -0.053[-0.363 ; 0.257] \\ 0.025[-0.354 ; 0.404] \end{gathered}$
Variable $\beta^{\beta(5)}$	age gap: 8 to 12 $0.147[-0.359 ; 0.654]$ $0.137[-0.367 ; 0.642]$	$\begin{gathered} \text { age gap: } 13 \text { to } 24 \\ -0.221 *[-0.410 ;-0.032] \\ -0.381^{*}[-0.739 ;-0.023] \end{gathered}$	marriage certificate -0.138 [-0.571;0.294] -0.155 [-0.769;0.458]	

An application to life-history analysis

2. Results

Variable-coefficients
(with 0.95 IC) :

- A high number of children lowers the risk.

$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	first wife once married -0.027 [-0.463;0.410] -0.021 [-0.466;0.425]	occupation of first wife: house-wife $\begin{aligned} & 0.024[-0.283 ; 0.332] \\ & 0.012[-0.283 ; 0.308] \end{aligned}$	$\begin{aligned} & \text { occupation of first wife: student } \\ & -0.092[-0.385 ; 0.202] \\ & -0.093[-0.803 ; 0.617] \end{aligned}$	occupation of first wife: employee $-0.065[-0.441 ; 0.311]$ $-0.050[-0.487 ; 0.387]$
Variable $\beta^{\beta(5)}$	occupation of first wife: artisan $0.071[-0.985 ; 1.128]$ $0.066[-0.709 ; 0.841]$ 0.066 [-0.709;0.841]	occupation of first wife: trade 0.058 [-0.862;0.978] 0.081 [-0.435;0.598]	$\begin{gathered} \text { occupation of first wife: agriculture } \\ 0.250[-0.807 ; 1.306] \\ 0.188[-0.457 ; 0.834] \end{gathered}$	occupation of first wife: non-available $\begin{aligned} & -0.063[-0.983 ; 0.858] \\ & -0.053[-0.623 ; 0.517] \end{aligned}$
Variable $\beta^{\beta}{ }^{(5)}$	$\begin{aligned} & \text { occupation: informal } \\ & -0.004[-0.309 ; 0.300] \\ & -0.010[-0.295 ; 0.275] \end{aligned}$	occupation: employee $0.133[-0.142 ; 0.408]$ $0.159[-0.123 ; 0.440]$	$\begin{gathered} \text { occupation: apprentice } \\ -0.088^{*}[-0.162 ;-0.015] \\ -0.071[-0.542 ; 0.400] \end{gathered}$	$\begin{gathered} \text { occupation: independent } \\ -0.051[-0.527 ; 0.424] \\ -0.105[-0.357 ; 0.148] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	$\begin{gathered} \text { occupation: student } \\ -0.039[-0.371 ; 0.293] \\ -0.062[-0.284 ; 0.159] \end{gathered}$	$\begin{gathered} \text { occupation: retired } \\ -0.091[-0.583 ; 0.400] \\ -0.046[-0.248 ; 0.156] \end{gathered}$	$\begin{gathered} \text { occupation: unemployed } \\ 0.003[-0.594 ; 0.600] \\ 0.022[-0.163 ; 0.207] \end{gathered}$	$\begin{gathered} \text { occupation: other inactive } \\ -0.071[-1.004 ; 0.863] \\ -0.042[-0.264 ; 0.180] \end{gathered}$
Variable $\beta^{\beta}{ }^{(5)}$	occupation: other with no income -0.097 [-0.818;0.625] -0.078 [-0.325;0.169]	residence: owner $0.021[-0.333 ; 0.376]$ 0.028 [-0.095;0.151]	$\begin{gathered} \text { residence: lodger } \\ -0.0862[-0.389 ; 0.216] \\ -0.076[-0.340 ; 0.188] \end{gathered}$	residence: family $0.014[-0.390 ; 0.418]$ $0.060[-0.207 ; 0.327]$ 0.060 [-0.207;0.327]
$\begin{gathered} \text { Variable } \\ \beta{ }^{(5)} \end{gathered}$	$\begin{gathered} \text { residence: husband's parents } \\ 0.040[-0.363 ; 0.444] \\ 0.062[-0.160 ; 0.284] \end{gathered}$	$\begin{gathered} \text { residence: other parents } \\ 0.114[-0.290 ; 0.517] \\ 0.076[-0.361 ; 0.513] \end{gathered}$	residence: other $-0.089[-0.493 ; 0.315]$ $-0.133[-0.400 ; 0.134]$	number of sons $-0.055[-0.170 ; 0.060]$ $-0.040[-0.095 ; 0.014]$
Variable $\beta^{\beta}{ }^{(5)}$	number of daughters $-0.040[-0.114 ; 0.034]$ -0.039 [-0.127;0.050]	$\begin{gathered} \text { no son } \\ 0.010[-0.212 ; 0.419] \\ 0.060[-0.185 ; 0.306] \end{gathered}$	$\begin{gathered} 1 \text { son } \\ -0.054[-0.352 ; 0.244] \\ -0.062[-0.258 ; 0.134] \end{gathered}$	$\begin{gathered} 2 \text { sons } \\ -0.059[-0.582 ; 0.465] \\ -0.025[-0.470 ; 0.419] \end{gathered}$
Variable $\beta^{\beta}{ }^{(5)}$	$\begin{gathered} 3 \text { sons } \\ -0.023[-0.850 ; 0.805] \\ 0.031[-0.393 ; 0.454] \end{gathered}$	$\begin{gathered} 4 \text { sons } \\ -0.039[-0.490 ; 0.411] \\ -0.022[-0.144 ; 0.101] \end{gathered}$	5 sons or more $0.051[-0.399 ; 0.501]$ $0.014[-0.109 ; 0.137]$	$\begin{gathered} \text { no daughter } \\ 0.015[-0.267 ; 0.297] \\ -0.003[-0.130 ; 0.124] \end{gathered}$
Variable $\beta^{\beta}{ }^{(5)}$	$\begin{gathered} 1 \text { daughter } \\ -0.121[-0.493 ; 0.252] \\ -0.076[-0.245 ; 0.092] \end{gathered}$	$\begin{gathered} 2 \text { daughters } \\ 0.164[-0.228 ; 0.557] \\ 0.141[-0.003 ; 0.285] \end{gathered}$	$\begin{gathered} 3 \text { daughters } \\ 0.051[-0.690 ; 0.793] \\ 0.037[-0.603 ; 0.676] \end{gathered}$	$\begin{gathered} 4 \text { daughters } \\ -0.084[-0.806 ; 0.638] \\ -0.084[-0.458 ; 0.289] \end{gathered}$
Variable $\beta^{\beta(5)}$	5 daughters or more $-0.085[-0.807 ; 0.637]$ $-0.072[-0.569 ; 0.426]$	$\begin{gathered} \text { number of children } \\ -0.055^{*}[-0.110 ;-0.007] \\ -0.048^{*}[-0.090 ;-0.006] \\ \hline \end{gathered}$	$\begin{gathered} \text { no child } \\ 0.049[-0.112 ; 0.210] \\ -0.009[-0.279 ; 0.262] \end{gathered}$	$\begin{gathered} 1 \text { child } \\ 0.012[-0.388 ; 0.411] \\ 0.014[-0.491 ; 0.520] \end{gathered}$
Variable $\beta^{\beta(5)}$	$\begin{gathered} 2 \text { children } \\ -0.044[-0.599 ; 0.512] \\ -0.023[-0.501 ; 0.455] \end{gathered}$	$\begin{gathered} 3 \text { children } \\ 0.098[-0.524 ; 0.720] \\ 0.129[-0.286 ; 0.544] \end{gathered}$	$\begin{gathered} 4 \text { children } \\ -0.144[-1.049 ; 0.761] \\ -0.135[-0.799 ; 0.529] \end{gathered}$	$\begin{gathered} 5 \text { children or more } \\ 0.003[-0.423 ; 0.430] \\ 0.007[-0.427 ; 0.441] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \\ \beta^{(5)} \end{gathered}$	$\begin{gathered} \text { no child out of marriage } \\ -0.017[-0.692 ; 0.657] \\ -0.035[-0.644 ; 0.575] \end{gathered}$	child out of marriage 0.017 [-0.657;0.692] 0.035 [$[-0.575 ; 0.644]$	$\begin{gathered} \text { age gap: } 0 \text { to } 3 \\ 0.121^{*}[0.015 ; 0.227] \\ 0.196^{*}[0.018 ; 0.374] \end{gathered}$	$\begin{gathered} \text { age gap: } 4 \text { to } 7 \\ -0.053[-0.363 ; 0.257] \\ 0.025[-0.354 ; 0.404] \end{gathered}$
$\begin{gathered} \text { Variable } \\ \beta \beta^{(5)} \end{gathered}$	$\begin{gathered} \text { age gap: } 8 \text { to } 12 \\ 0.147[-0.359 ; 0.654] \\ 0.137[-0.367 ; 0.642] \end{gathered}$	$\begin{gathered} \text { age gap: } 13 \text { to } 24 \\ -0.221^{*}[-0.410 ;-0.032] \\ -0.381^{*}[-0.739 ;-0.023] \end{gathered}$	$\begin{gathered} \text { marriage certificate } \\ -0.138[-0.571 ; 0.294] \\ -0.155[-0.769 ; 0.458] \end{gathered}$	

THE END

 0 ll

A few references:

- Chauvet J., Trottier C., Bry X. (2019): Component-based regularisation of multivariate generalised linear mixed models, Journal of Computational and Graphical Statistics (in press).
- Bry X., Simac T., El Ghachi S., Antoine P. (2018) : Bridging data exploration and modeling in event-history analysis: the supervised-component Cox regression, Mathematical Population Studies (in press).
- Bry X., Trottier C., Mortier F., Cornu G. (2018): Component-based regularisation of a multivariate GLM with a thematic partitioning of the explanatory variables, Statistical Modeling, SAGE (in press).
- Bry X., Verron T. (2015) : THEME: THEmatic Model Exploration through Multiple Co-Structure maximization, Journal of Chemometrics, vol.29, 12; pp.637-647
- Bastien P., Esposito Vinzi V., and Tenenhaus M. (2005). PLS generalised linear regression. Computational Statistics \& Data Analysis, 48: 17-46
- Bastien P. (2007): Deviance residuals based PLS regression for censored data in high dimensional setting, Chemometrics and Intelligent Laboratory Systems, pp. 78-86, 2007
- Bry X., Antoine P. (2004): Exploring explanatory models ; an event history application - Population-E 59(6).
- D.R. Cox, (1975): Partial Likelihood, Biometrika, vol. 62, p. 269-276
- Breslow, N. E. and Crowley, J. (1974): A large-sample study of the life table and product limit estimates under random censorship. Annals of Statistics 2, 437-454.
- Kalbfleisch, J. D. and Prentice, R. L. (1973): Marginal likelihoods based on Cox's regression and life model. Biometrika 60, 267-278.
- van Houwelingen HC, Bruinsma T, Hart AAM, van't Veer LJ, Wessels LFA (2006): Cross-Validated Cox Regression on Microarray Gene Expression Data. Statistics in Medicine, 25, 3201-3216

